15.4 Lecture: Regions in polar coordinates and converting from Cartesian integrals to polar integrals

Jeremiah Southwick
(But really Robert Vandermolen)

Spring 2019

Links

Robert's slides can be found here:
http://people.math.sc.edu/robertv/teaching.html
The 15.4 slides can be found here:
https://docs.google.com/presentation/d/
1-xUgXkCZh0CglmUvGODH8yx6bjv6z4nGlkZLxVPeqZ8

DOUBLE INTEGRALS WITH

 POLAR COORDINATES!Let's recall how we relate polar coordinates and rectangular coordinates in the xy-plane...

$$
r^{2}=x^{2}+y^{2} \quad \tan (\theta)=\frac{x}{y}
$$

DOUBLE INTEGRALS WITH

 POLAR COORDINATES!Let's practice finding some regions in polar coordinates...
$R:$

DOUBLE INTEGRALS WITH

 POLAR CODRDINATES!Let's practice finding some regions in polar coordinates...

R :

DOUBLE INTEGRALS WITH POLAR COORDINATES!

In 2-dimensions we can integrate, just as we did befor, this time the areas have a slightly different shape...

DOUBLE INTEGRALS WITH POLAR COORDINATES!

In 2-dimensions we can integrate, just as we did befor, this time the areas have a slightly different shape...

DOUBLE INTEGRALS WITH POLAR COORDINATES！

In 2－dimensions we can integrate，just as we did befor，this time the areas have a slightly different shape．．．

We call this region a Polar Sector

DOUBLE INTEGRALS WITH

 POLAR COORDINATES!Yet we seen how to take a function $z=f(x, y)$, in rectangular coordinates, and set up many interesting double integrals, so to change our integration to polar coordinates, we will need to see how to change dx and dy into dr and $\mathrm{d} \theta \ldots$

To do this let's look at the region R, and look at the area

$$
\begin{aligned}
d x d y=\Delta A & =\frac{\left(r_{2}^{2}-r_{1}^{2}\right)\left(\theta_{2}-\theta_{1}\right)}{2} \\
& =\frac{\left(r_{2}+r_{1}\right)}{2}\left(r_{2}-r_{1}\right)\left(\theta_{2}-\theta_{1}\right) \\
& =\frac{r_{2}+r_{1}}{2} \Delta r \Delta \theta \\
& =r \Delta r \Delta \theta
\end{aligned}
$$

DOUBLE INTEGRALS WITH

 POLAR COORDINATES！With this we arrive at our change of variable．．．

CHANGE TO POLAR COORDINATES IN A DOUBLE INTEGRAL If f is con－ tinuous on a polar rectangle R given by $0 \leqslant a \leqslant r \leqslant b, \alpha \leqslant \theta \leqslant \beta$ ，where $0 \leqslant \beta-\alpha \leqslant 2 \pi$ ，then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

DOUBLE INTEGRALS WITH POLAR COORDINATES!

Let's practice finding some double integrals with polar coordinates...

Let R be the region between the two circles

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
\text { and } \\
x^{2}+y^{2}=25
\end{gathered}
$$

R :
 $0 \leq \theta \leq 2 \pi$
 $1 \leq r \leq 5$

Evaluate the integral:
$\int_{R} \int\left(x^{2}+y\right) d A$

DOUBLE INTEGRALS WITH POLAR COORDINATES!

Let's practice finding some double integrals with polar coordinates...

Let R be the region between the two circles

$$
x^{2}+y^{2}=1
$$

and

$$
x^{2}+y^{2}=25
$$

Evaluate the integral:
$\int_{R} \int\left(x^{2}+y\right) d A$

DOUBLE INTEGRALS WITH

POLAR COORDINATES!

As with rectangular coordinates, we can bound by functions as well...

If f is continuous on a polar region of the form

$$
\begin{gathered}
D=\left\{(r, \theta) \mid \alpha \leqslant \theta \leqslant \beta, h_{1}(\theta) \leqslant r \leqslant h_{2}(\theta)\right\} \\
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{gathered}
$$

then

